Explaining periodic trends Q/A – what will/what won't get the points...

<u>General strategy:</u>

- 1) Locate both elements on the periodic table and state the principal energy level (*n*) and sublevel (*orbital set*) containing the valence electron for each element.
- 2) Do they have the same or different (*n*) values?
 - \circ ~ If the same, discuss point with Z_{eff}
 - If different, discuss point with *n* vs. *n* distance

Trend:	Atomic radii decrease as atomic number increases in any given period (left to right trend)
Example question:	Which is larger in the ground state: S or Al? Explain why.
Will get points	Effective nuclear charge (Z _{eff}) increases the attraction of the nucleus and therefore pulls the electron cloud closer to the nucleus resulting in a smaller atomic radius
Won't get points	Stating the trend

Trend:	Atomic radii increase as atomic number increases down a column or group (top to bottom trend)
Example question:	Which is larger in the ground state: S or Te? Explain why.
Will get points	• Increased number of energy levels (<i>n</i>) increases the distance over which the nucleus must pull and therefore reduces the attraction for the electrons
	Full energy levels provide some shielding between the nucleus and the valence electrons
Won't get points	Stating the trend

Trend:	Ionization energy increases as atomic number increases in any given period (left to right trend)
Example question:	Which has a larger ionization energy, Ge or Se? Explain why.
Will get points	• Effective nuclear charge (Z _{eff}) increases the attraction of the nucleus and therefore holds the electrons more tightly
	• Exception: a drop in IE occurs between groups 2A and 3A because the <i>p</i> electrons do not penetrate the nuclear region as greatly as the <i>s</i> electrons do and therefore are not held as tightly
	• Exception: a drop in IE occurs between group 5A and 6A because the increased repulsion created by the first pairing of electrons outweighs the increase in Z _{eff} and thus less energy is required to remove the electron
Won't get points	 Stating the trend Stating that <i>p</i> electrons are further away from the nucleus
	 Stating that atoms are more stable with a half filled orbital (not an explanation!)

Trend:	Ionization energy decreases as atomic number increases down a column (top to bottom trend)
Example question:	Which has a larger ionization energy, Mg or Sr? Explain why.
Will get points	• The increased number of energy levels (<i>n</i>) increases the distance over which the nucleus must pull and therefore reduces the attraction for electrons
	Full energy levels provide some shielding between the nucleus and valence electrons
Won't get points	Stating the trend

Trend:	Positive ions are smaller than their respective neutral atoms
Example question:	Which is larger in the ground state: Sr or Sr ²⁺ ? K ⁺ or Ca ²⁺ ? Explain why.
Will get points	 Positive metal ions result from the loss of valence electrons. In many cases this means the farthest electrons are now in a smaller principal energy level (<i>n</i>) than the neutral atom, thus there is an increase in the Z_{eff} felt by the remaining valence electrons. As electrons are lost, the ratio of p+/e- increases and thus the electrons are held closer and with more strength.
Won't get points	 Stating the trend Saying the ion is smaller because it lost electrons Failing to mention the difference in energy levels now occupied Ignoring the change to the p+/e- ratio

Trend:	Negative ions are larger than their respective neutral atoms
Example question:	Which is larger in the ground state: S or S ²⁻ ? Explain why.
Will get points	Negative nonmetal ions result from the addition of valence electrons. As electrons are added
	the p+/e- ratio decreases and the electrons are not as closely held
	Increased e-/e- repulsion also plays a role in expanding the electron cloud
Won't get points	Stating the trend
	• Saying the ion is bigger because it has gained electrons
	• Ignoring the change to the p+/e- ratio
	Ignoring the effect of increased e-/e- repulsion

Trend:	Metals are more reactive as you move down a column
Example question:	Which more reactive: Sr or Ca? Explain why.
Will get points	Metals react by losing electrons, and a loosely held electron will result in a more reactive metal. This is directly related to ionization energy. With an increased number of occupied energy levels (<i>n</i>) comes increased distance from the nuclear attraction and thus a more loosely held electron available for reacting.
Won't get points	 Stating the trend Saying "they want to follow the octet rule" Saying that metals are more reactive at the bottom left corner of the table

Trend:	Nonmetals are more reactive as you move up a column
Example question:	Which more reactive: S or Se? Explain why.
Will get points	Because nonmetals tend to gain electrons, a strong nuclear attraction will result in a more reactive non-metal. This means the atom with the highest Z_{eff} and the least number of occupied energy levels should be the most reactive nonmetal (F) because its nucleus exerts the strongest pull.
Won't get points	 Stating the trend Saying "they want to follow the octet rule" Saying that nonmetals are more reactive at the top right corner of the table